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A constitutive equation of time-dependent, chemically stable materials, which stems from the basic 
ideas of the irreversible thermodynamics of an internal variable and Eyring's absolute reaction rate 
theory, has been extended to chemically unstable materials. This formulation is quite general and, in 
principle, can be applied to many types of materials. In this paper, the ageing behaviour of time- 
dependent network polymers undergoing chain scission is considered. In the network scission process, 
we postulate that the energy barrier is affected by a changing of the chemical crosslink density. An 
explicit equation to account for the energy barrier change, which influences the relaxation process, is 
formulated. For the purpose of illustration, the effect of different chemical crosslink density, v, on the 
relaxation rate has been considered, from which the following theoretical expression of relaxation 
modulus AE(t) is obtained: 

AE= Ak"[t exp (yv/kT)] 

It can be seen that a change in v leads to an effective change in the time scale, usually denoted by ax. Here 
the analytical expression ax=eXp(yv/kT ) correlates quite well with the experimental data. 

Keywords Ageing; relaxation function; crosslink density; entanglements; bond scission; energy 
barrier 

INTRODUCTION 

Previously t we used the formalism of irreversible thermo- 
dynamics of internal variables as a framework for the 
development of constitutive equations for 'chemically 
stable materials'. Such materials can be defined in a 
physical context by saying that their properties (physical, 
mechanical or thermal) remain unchanged with the 
passage of time when they are in an unstressed state. 
Equivalently, they may be defined in a mathematical 
context by a statement to the effect that their constitutive 
equations remain invariant with a time translation. 
Equally well one may define a chemically stable material 
in an experimental context by stipulating that the time of 
origin of an experiment has no effect on the material 
response observed. 

In this paper we shall deal with the development of 
constitutive equations for materials that are not  chemi- 
cally stable. This we shall do by recourse to the theories of 
thermodynamics of internal variables and absolute rate 
processes as they were developed by the first author and 
his co-workers. 

The original theory of absolute reaction rates was first 
proposed by Eyring 2. This theory has more recently been 
referred to as 'deformation kinetics'. It is this term that we 
shall be using in the remainder of this paper. 

In order to proceed in an orderly fashion we shall 
review briefly the theory of internal variables in the 

* This paper represents one phase of research performed by the Jet 
Propulsion Laboratory, California Institute of Technology, sponsored 
by the National Aeronautics and Space Administration, Contract 
NAS7-100 

context of deformation kinetics of stable materials, as it 
was proposed and developed in ref. 3. 

The basic idea behind the theory of internal variables is 
that, in order to define uniquely the Helmholtz free energy 

ofa'system' undergoing an irreversible process, one has 
to expand the dimensions of the state space of defor- 
mation and temperature (state variables commonly em- 
ployed in classical thermodynamics to study elastic 
materials) by introducing a sufficient number of ad- 
ditional state variables which are considered essential for 
the description of the internal structure of the material in 
question. The n thermodynamic variables c[" are the 
additional variables necessary to define the thermody- 
namic state of a material system.t The number n of these 
variables is related to the material structure as well as to 
the degree of accuracy with which one wishes to represent 
the material response. 

The fundamental thermodynamic equations that, in 
principle, apply irrespective of the constitutive properties 
of a material are, in the notation of ref. 3: 

~ = ~b(~C, 0,9~ " ) (1) 

L =  2(p/PoXO~,/~C~) (2) 

J? = --  0~/ / 00  (3) 

~'/~9~'" ~" ~< 0 (r not summed) 

t A tilde under any symbol wiU denote a second-order tensor, a double 
tilde a fourth-order tensor 
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The last inequality is the Clausius-Duhem inequality, 
whereas ~ is the right Cauchy-Green deformation tensor, 
0 the temperature, p and Po the current and reference 
densities, respectively Tjs the stress defined in the material 
frame of reference, r/is the entropy per unit undeformed 
volume, and the dot over 9~' denotes differentiation with 
respect to time t. 

The above set of equations does not include con- 
stitutive equations for the internal variables. These ad- 
ditional equations, referred to as 'internal constitutive 
equations', determine, in fact, the mechanical response of 
the particular material. In general, these are of the form 

d~/dt=~(C~,$k,o) (5) 

for all r, where ~ are material functions. Valanis I used the 
Clausius-Duhem inequality as a starting point to obtain 
as a first approximation a linear 'internal constitutive 
equation' relating the internal forces aO/a~" to the rate 
of change of the internal variables, henceforth called 
internal velocities or fluxes, i.e. 

dQ" 
+ ~ " - ~ t  = 0 (r not summed) (6) 

where ~" are positive semidefinite viscosity tensors of 
fourth order. 

This equation is likely to be valid in situations where 
the atomic or molecular motions are 'extremely slow 
and/or small', as a consequence of the approximation 
used in its derivation. This linear internal constitutive 
equation has been applied with success to describe the 
thermomechanical response of materials 4. In cases where 
the relation between the internal forces ~/~9~" and the 
time rate of change of the internal variables dg"/dt is not 
linear, i.e. for 'finite' atomic motions, one is at a loss to 
determine the precise nature of the non-linear relation. 
Such a relation was established in section III of ref. 3 using 
statistical mechanics and the concept of potential energy 
barriers. The linear internal constitutive equation (6) was 
then shown to be a special case of this non-linear equation 
in the case of'extremdy slow and/or small motions'. In the 
process of establishing the relationship between internal 
forces and fluxes, Valanis and Lalwani proposed for the 
first time a precise physical interpretation of the internal 
variables which had, so far, played the role of physically 
nebulous but essential mathematical and thermodynamic 
variables needed to define the thermodynamic state 
uniquely. 

An internal variable in the theory of ref. 3 represents the 
average displacement of a group of atoms whose motion is 
impeded by a potential energy barrier of specific magnitude. 
The response of a group of atoms to an externally applied 
force field then constitutes the mechanism which operates 
on the atomic level and thereby contributes to the gross 
process. 

Another important element of the theory we feel lay in 
identifying the microforce, on a group of atoms, which 
arises as a result of an externally applied stress field. 
Valanis and Lalwani identified the microforce as the free 
energy gradient a~/~9" that causes the. flux dg~'/dt. . Hi-. 
therto, it had been difficult to estabhsh a relationship 
between the external stress and the microforce encoun- 
tered in the Eyring theory and resort to mechanical 
models has been necessary in order to establish such 

relationships. In contrast, this microforce was given an 
identity in section III of ref. 3 and its relationship with the 
external stress was established. 

The same ideas apply almost without change to the 
deformation and ageing of polymers, the subject we deal 
with in this paper. An internal variable in the present case 
represents the average displacement of a group of mo- 
lecules whose motion is impeded by a potential energy 
barrier of a specific height. Similarly, the microforce is the 
free energy gradient ~//~9~' which causes the flux d~/dt. 

THEORY OF ABSOLUTE RATE PROCESSES 

The theory of absolute reaction rates stemmed from the 
proposal made by S. Arrhenius, concerning the influence 
of temperature on reaction rates, which resulted in the 
well known 'Arrhenius law'. Arrhenius introduced in this 
law the concept of activated molecules and the equilib- 
rium of these molecules with the reactant molecules. 

The theory of rate processes as proposed by Eyring 2 is 
based on the idea that any rate process is characterized by 
an initial configuration which passes by means of a 
continuous change of the coordinates into the final 
configuration (via an intermediate configuration) called 
the activated state of the system. The activated state is 
situated at the highest point of the most favourable part 
on the potential energy surface. 

The specific rate constant r of the rate process is 
expressed as follows: 

kT F r 
r =  - -  exp ( -  eo/k T) (7) 

h FAFB... 

where k is the Boltzmann constant, T the absolute 
temperature, h is Planck's constant, F r is the partition 
function of the activated complexes, F^, Fn are the 
partition functions of the initial reactants, and 80 the 
activation energy. 

In the case of inelastic deformation of solids, r repre- 
sents the frequency of crossing of an energy barrier by a 
group of atoms. This information leads to the derivation 
of an expression for the velocity of atoms. In addition, if 
the effect of external stress on the potential barriers were 
known, a relationship between this effect and the velocity 
of atoms could be established. This would, in fact, be the 
'internal constitutive equation'. In section III of ref. 3, 
such a relationship was determined for the first time. In 
this paper we shall apply these ideas to the deformation 
and ageing of polymers. 

INTERNAL CONSTITUTIVE EQUATIONS AND 
ENERGY BARRIERS 

As noted earlier, in cases where the relation between the 
internal forces 0~,/ag,' and the time rates of change of the 
internal variables 9~' is not linear, the precise nature of the 
non-linear relation is not known. In ref. 3 Valanis and 
Lalwani. .established such a relation, between 8~10 ~" and.~" 
m one dnnension for what Is believed to be the first tune. 
This they did by assuming that the system at the atomic 
level is in an equilibrium initial configuration. In addition, 
it was assumed that the temperature is sufficiently high for 
Boltzmann statistics to be applicable. In this section these 
ideas are applied to crosslinked polymers, with specific 
reference to one dimension. 
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cally in Figure 2, by an unbroken line. Also shown in 
Figure 2 is an approximate 'equivalent' single symmetric 
barrier representation of the multiple barrier 
configuration. 

Such equivalence may be acceptable at higher tempera- 
tures; however, 'local asymmetries' may be essential in 
describing the details of the mechanical response at lower 
temperatures. 

Consider a system of molecules N" in equilibrium, 
facing symmetric potential barriers to their motion of 
height ~o- As these molecules would most probably 
occupy positions in the wells, one such well is considered, 
shown in Figure 1. 

The probability fo that a molecule is in an energy state 
which is greater than or equal to ~0 is: 

p~= ~' ~t exp(-f lg~) (10) 
,r>,~ 

Figure 2 Symmetric mult iple barrier and equivalent single 
symmetric barrier 

A molecule in an environment of a disordered mole- 
cular structure faces potential banders of different shapes 
and heights. The height of an energy barrier appropriate 
to a certain molecule is determined to a good approxi- 
mation by the immediate environment of that molecule. A 
molecule has to acquire sufficient energy to surpass such a 
barrier in its path. When in equilibrium, molecules have a 
tendency to occupy positions of lowest potential energy as 
these are the most stable. A large majority of molecules 
would thus be expected to be found oscillating in wells 
formed by energy barriers. 

It is stipulated that the probability of occurrence of a 
particular equilibrium configuration of a system is given 
by the Boltzmann distribution law. Accordingly, the 
probability p~ of finding a molecule in the energy state e~ is 
given by 3: 

States 8[ such that e~>e[ we call , a e ~ m ~  states, thus 
differing from Eyring. The number ,of .maimmle, in an 
activated state is equal to N'p'o, thus: 

N ' ~ o = N '  exp(- /~e[ )  ~ • e x p ( - / ~ ; ' )  ( l l )  
¢7>0 

where r _  r r 
~ l  - -  81 - -  8 O" 

As the banders are symmetric, the p r o ~  of a 
molecule moving either backwards or forwards with 
respect to the barrier el is the same. The net motion 
(average velocity) of the molecules N" is therefore equal to 
zero. When a stress field at the microsoopic level is 
applied, the resulting gross net motion must imply a 
redistribution of heights of energy barriers, so that local 
equilibrium is disturbed leading to average global motion. 

The fundamental hypothesis in this paper is that the 
molecular level and, as a result of the application of a stress 
field, the potential energy surface in the vicinity of the group 
of molecules associated with the internal variable ~ suffers a 
local tilt which is assumed to be linearly proportional to the 
free energy gradient Od//O(. This hypothesis is central in 
our derivation and should hold if perturbations from the 
equilibrium configuration are 'sufficiently small'. 

This local tilt causes a decrease in the height of the 
potential energy barriers which oppose motion in the 
specified direction and a corresponding equal increase in 
the height of barriers impeding motion in the opposite 
direction (see Figure 3). 

where 
p~=~exp(-~el) (8) 

0t= 1 / ~ e x p ( - , e ~  (9a) 

f l = l / k T  (9b) 

For the purpose of deriving appropriate forms of 
constitutive equations, symmetric barriers will be con- 
sidered, shown typically in Figure 1. It is possible that, in 
the course of a mechanical test, potential energy barriers 
exist which are asymmetric. To maintain global equilib- 
rium in the unstressed state, however, it is conjectured 
that compensating asymmetric barriers exist which result 
in an overall barrier symmetry. Such an arrangement 
resulting in a symmetric multiple barrier is shown typi- 

Figure 3 
field 
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Let this change in the height of the barriers 8~ be 
denoted by co'. The number of molecules with energies 
greater than (8~-to') is: 

A ' = N "  exp[-fl(e[-to')] ~ ~ exp(-fl,;') (12) 
~;'>0 

and the number of molecules with energies greater than 
(8~ + to') is: 

energy. Hence equation (19) should be an appropriate 
relationship when studying quasistatic processes (pro- 
cesses not far removed from equilibrium). This argument 
is further supported by the fact that (19) is a special case of 
(17) in the event of extremely slow net motions ~, away 
from the equilibrium configuration where 4' =0. Equa- 
tion (19) describes very well the mechanical response of 
linear viscoelastic materials where K~ and K~ are material 
constants. 

B'=N'exp[-fl(8[+to')] ~ ~ exp(-~8;') (13) 
8;'>0 

The net number of molecules that partake in the forward 
motion is then the number whose energies are greater 
than (el-to ')  but less than (d+to'), i.e. A ' - B ' .  This 
number is given by: 

A ' -  B' = 2N' exp(-  fls~) sinh(flto')~ ct exp(-  38;") (14) 

With reference to Fioure 1, i fd  is the average time taken 
by a molecule to traverse a distance 2" across a barrier, 
then the net average velocity t/" of molecules in the 
conventional forward direction is: 

c [  = - n ' ) / N "  (15) 

Here q" represents the net average displacement of 
molecules across a potential barrier. 

The hypothesis that the local tilt is linearly pro- 
portional to the free energy gradient d~k/dg' leads im- 
mediately to the equation: 

to'= -C,(O~/~q')2" (16) 

where C, is the proportionality constant. 
Thus it follows from equations (14), (15) and (16) that: 

~" + K~ sinh K 2 =0 (17) 

where K~ and K~ are non-negative constants given by the 
equations: 

22' exp(-fls;)) ~ = exp(-fls;') (18a) 
K~ = T--;- *7>0 

= C,/~,~" (18b) 

Equation (17) is of fundamental importance in that it is 
a phenomenologlcal constitutive equation derived from 
kinetic considerations at the molecular level. Equation 
(17) was first derived for metals in ref. 3. 

Special case of equation (17) 
We notice from equations (18a) and (18b) that, if at high 

temperatures, K~ decreases while K~ increases, a linear 
relationship between ~l' and a~k/Ocl" is obtained as a first 
approximation. If the above assumptions are true, then 
equation (17) would reduce to the form: 

£1" = - K~ K~dO/O~ (19) 

Physically speaking, at high temperatures, molecules 
have enough thermal energy to equilibrate themselves by 
occupying more stable positions of lowest potential 

MECHANICAL RESPONSE IN THE 
PRESENCE OF BOND SCISSION 

For the purpose of introducing this section on the 
mechanical response in the presence of bond scission we 
shall discuss some general features of relaxation of 
crosslinked polymers that are consistent with a model 
which we shall call the 'skeleton model'. In effect a 
crosslinked polymer consists of a three-dimensional skele- 
ton of chemically bonded chains which is embedded in a 
milieu of entangled randomly oriented uncrosslinked free 
molecules, which we shall call the 'molecular liquid'. 
During the course of relaxation there are two essentially 
distinct processes that take place simultaneously. The first 
process is the relaxation of the free molecules themselves; 
the second is the relaxation of the skeleton. The first is a 
more rapid process, the skeleton being more ponderous 
and unwieldy. In reality the first process could be 
substantially over before the second has time to develop 
to any significant degree. This is strongly indicated by the 
intermediate plateau which appears when E(t) is plotted 
versus log t, as shown schematically in Fioure 4. (The 
amount and rate of relaxation of skeleton shown in 
Fioures 4 and 5 are exaggerated. It is important to note 
that the relaxation processes of crosslinked polymer at 
this range is very slow and the change of modulus is small 
compared with whole spectrum of relaxation.) 

When the crosslinking density v is increased, E'R will 
increase and so will ~0 while E o will remain essentially 
unchanged. The fact that the relaxation of the skeleton is 
impeded by the molecular liquid implies that the denser 
the molecular liquid, the slower the relaxation of the 
skeleton will be, and vice versa. As crosslinking increases, 
the molecular liquid becomes less dense since molecules 
are subtracted from it and are added to the skeleton. 
Therefore crosslinking should from some point on begin 
to increase the rate of relaxation of the liquid as well as 
that of the skeleton. These statements are summarized in 

Figure 4 

Relaxation function 
=~of molecular liquid 

Relaxation function 
b - ~ -  " - -  

Log t 

Typical relaxation function of a crosslinkod polymer 
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Figure 5 in terms of two relaxation functions Et(t) and 
E2(t) corresponding to two values v 1 and v2 of v where 
V 1 < V 2 . 

The behaviour illustrated in Figure 5 is consistent with 
observation. 

In what follows we shall l imit  ourselves to the re- 
laxation of the skeleton, i.e. we shall examine the re- 
laxation function for t > t, where the significance of q is 
shown in Figure 5_ 

For the purposes of formulation of the problem we 
begin with the following equation: 

~0 = ~ ~0,(e-q,) (20) 

which ascribes to each internal atomic or molecular 
conformation associated with q,, a free energy ~O,, and 8 is 
the strain inside the material imposed by stress field. The 
same equation also implies that the conformational free 
energies are additive. We now indicate explicitly that ~b, is 
a function of the crosslink density v: 

~k, = ~ , ( e -  q, ;v) (21) 

Thus, as before, the total free energy qJ is given: 

~0 = ~ ~0,(e- q,; v) (22) 
r 

In a conceptual sense v may also be regarded as an 
internal variable of a nature which, however, is decidedly 
different from that of q,. This being the case, the stress is 
obtained from (2), i.e. 

z = (23) 

The equations of evolution of the internal variables q, 
have already been determined and are given by (17), i.e. 

/ ' 
(24) 

presence of a stress field, then the rate of change of v is 
governed by the classical rate equation: 

dt + kT-~°/kr=O (25) 

where ~o is the bond energy of a bond in the set of bonds v. 
The bond energy is, essentially, the potential energy 
barrier to the dissociation process. 

It is, however, quite natural to presume that the 
presence of the stress field will have an effect on the 
scission process, through a change in the potential energy 
barrier %. 

In keeping with our previous arguments on defor- 
mation kinetics, we presume that the change A% in e0 is 
due to the presence of the free energy gradient Oqt/Oq, and 
is in fact a function thereof. Ostensibly, for the purposes of 
obtaining explicit results we assume that the dependence 
is linear and that: 

O_q,/~, (26) Ago ~ Z  

where /~, are non-negative material constants. The 
mechanical coupled scission process is now given by the 
relation: 

dv v l- 
(27, 

Equations (21)-(27) represent the coupled theme- 
mechanical behaviour of the polymer. The vertical bars 
denote the absolute value of Od//Oq,. These are necessary 
to ensure that the sign of the internal force has no effect on 
the rate of change of the crosslink density which is a scalar. 

APPLICATIONS 

For the purposes ofiUustration we limit ourselves initially 
to one internal variable and let ~0 be of quadratic form. In 
this case: 

[0 =½E l (e - q ) 2  +½Kve2 (28) 

where K is a constant and E 1 may depend on v. This 
simple form of qJ is indeed suitable for application to the 
long-term relaxation of the skeleton when the confor- 
mations with the shorter relaxation times have relaxed 
and only one remaining configuration plays a role of 
importance in the relaxation process. We also use the 
asymptotically linear form of equation (24) and set 
(KtK2)-1  =q. With regard to equation (25) we also set: 

k~exp  ( -  8o/K T) = b (29) 

Then equations (23), (24) and (27) become: 

= E 1 (e - q) + Kve (30) 

We note that ~O now depends on v and that the rate of 
change of q, now depends implicitly on v also. 

It remains to determine the rate of change of the 
number ofcrosslinks v as a result of scission. If the scission 
process is purely chemical and is unaffected by the 

If we now set 

rl~l + El ( q - e ) = O  (31) 

~; + b exp (pie - ql)v = 0 (32) 

e - q = p  (33) 
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then (30)-(32) become: 

z = E lp  + Kve (34) 

p + E t  p = ~ (35) 
r/ 

+ b exp(#lpl)v -- 0 (36) 

Equations (34)-(36) represent the chemomechanical be- 
haviour of a thermodynamic system with one internal 
variable. The presence of the second term on the right- 
hand side of (34) ensures the existence of an equilibrium 
elastic response of the skeleton with an equilibrium 
modulus (Kv) which is evidently proportional to the 
crosslink density v. 

We repeat at this point that r/may be very strongly 
dependent on v. 

The generalization to a system with n interval variables 
is straightforward. To wit 

= ~. E,p, + Kve (37) 
r=l 

~ , + ~ p , = ~  r=l ,2 ..... n (38) 

viscous-like milieu which consists primarily of unattached 
chains. 

If the process of relaxation is regarded as a process of 
overcoming energy barriers presented by collision with 
free chains, then one can reason that the less the density of 
free chains, the less the probability of meeting an energy 
barrier. 

Let the energy to overcome the resistance of a single 
chain to the relaxation process ofa crosslinked chain be 0. 
Thus if m is the average number of free chains in the 
relaxation path of a crosslinked chain, then the energy 
required for relaxation is toO. Let VT be the total number of 
links including crosslinks as well as entanglements. Also 
let v= be the number of entanglements. Then 

V,+V=VT (41) 

It is reasonable to assume that VT is constant in which case 
a linear relationship exists between v, and v. Also ifN is the 
number of a free chains then, on purely topological 
considerations, it is reasonable to expect a linear re- 
lationship of the type: 

v= = a N  + b (42) 

where aand b are positiveconstants. Thus, from(41)and 
(42): 

~ +bexp ( , ~  ~,lp, I) v =0  (39) N = v T - b  v (43) 
a a 

where/~, may depend very strongly on v as before. The 
physics of this dependence will be discussed at some 
length later in this section. 

In studies on styrene-butadiene rubber (SBR), it has 
been found that the near-equilibrium part of the re- 
laxation function is influenced to a significant effect by the 
crosslink density v. Specifically, if AE(t) is the relaxation 
function minus its equilibrium part, and if vl and vz are 
two crosslink densities where Vz is greater than v~, then 
the following law is proposed: 

Since m is proportional to N then the energy e required for 
relaxation/per chain is: 

where =' is a proportionality constant. 
The above expression may be written in the form 

= ~ o  - ~,v (45) 

(4o) 

where n is a positive integer. This law was proposed by 
Plazek s on the basis of the observation by Chasset and 
Thirion ~ that if AE(t) is plotted versus log t for various 
values of v, then an increase in v shifts the function E(t) to 
the left by a rigid body translation which is a function ely. 
This function was found to be approximately of the type 
Av" where A is a constant. In the case of SBR, for instance, 
Arenz 7 found n to be ofthe order of 14 or 15 depending on 
the type of polymer at hand. it follows from equation (40) 
that the relaxation is actually accelerated by an increase in 
the crosslink density, as conjectured earlier. 

In the context of our present deformation kinetics 
concepts, this phenomenon can be explained physically 
through recourse to the role of energy barriers in imped- 
ing the motion of the molecular chains of the skeleton. 

Crosslinking has primarily two effects. One is to reduce 
the length of chains between crosslinks and the other is to 
reduce the number of free unattached chains, thus de- 
creasing the density of the molecular liquid. The process of 
relaxation of a chain is impeded by the presence of the 

where ~0 is a reference energy and ~ is a positive constant. 
In relation to the theory of deformation kinetics and as 

a result of equation (45), the rate constant KI is given by: 

eo-TV 1 

The above equation may be written in the form: 

K t = K~ exp (Tv / r T )  (47) 

where K ° is a reference value of KI. 
Equation (47) is instrumental in determining the effect 

of crosslink density in the near-equilibrium part of the 
relaxation function. To determine this relationship we 
note that the viscosity coefficient t / in equation (31) is 
given by: 

1 
t 1 = K I K 2  (48) 

a relation which is deducible from the linearized form of 
equation (24), and is essentially equation (19). 
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where: 

AE = Ele-~' (52) 
and 

u=%exp(~v/rT) (53) 
Since El, as opposed to q, is likely to be insensitive to 
changes in v, then it follows from (52) and (53) that: 

AE(7) = AE°[t exp(~v/xT)] (54) 

The above equation has the general features of equation 
(40), except that the shift factor is an exponential rather 
than a power function of v. Both functions are shown in 
Figure 6 vis-&-vis experimental data obtained by Arenz 7. 
It may be observed that the power function favours lower 
values of v whereas the exponential function favours 
higher values of v. Since the measurement of v becomes 
more accurate as v increases, the exponential form of the 
shift factor seems preferable in the present instance. 

Equations (37) to (39) may now be written m the 
following more explicit form: 

Thus, I/q as it appears in equation (35) is given by 
equation (49) where: 

or  

1 
- = K 2  K °  exp (~v/xT) (49) 
r/ 

1 1 
- = - -  exp (yv/xT) 50) 
r/ r/0 

where tlo is the viscosity of the molecular liquid when the 
crosslink density v is equal to zero. 

Again with reference to equation (49), the non- 
equilibrium part of the relaxation modulus at v=0, 
denoted here by AE °, is given by the relation: 

AE°(t) = E~ exp ( -  at°T) (51) 

where a° = E°l/tlo . 
At some other value of the crosslink density let the non- 

equilibrium part of the relaxation modulus be AE(t) 

a = ~. E,p, + rye (55) 
r = l  

~,+(~,)exp(~,,v/KT)p,=~ (56) 

~ + bexp C~= l lA.IP, I)v=O (57) 

An explicit solution of the above set of equations under 
conditions of varying e and/orv will be presented in a 
subsequent paper. 
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